精品久久人人妻人人做精品,av无码免费一区二区三区,十八18禁国产精品WWW,成熟女人特级毛片WWW免费

您好,歡迎進(jìn)入安科瑞電子商務(wù)(上海)有限公司網(wǎng)站!
全國服務(wù)熱線:18717707094
安科瑞電子商務(wù)(上海)有限公司
產(chǎn)品搜索
PRODUCT SEARCH
產(chǎn)品分類
PRODUCT CLASSIFICATION
您現(xiàn)在的位置:首頁 > 技術(shù)文章 > 簡談高頻調(diào)制的霍爾傳感器 讀出電路設(shè)計與選型

簡談高頻調(diào)制的霍爾傳感器 讀出電路設(shè)計與選型

瀏覽次數(shù):881更新時間:2021-09-07
  劉丹
 
  安科瑞電氣股份有限公司 上海嘉定 201801
 
  摘要:本文基于霍爾傳感器輸出信號幅度小、頻率低、易受噪聲干擾的特點(diǎn),有針對性地提出一種基于高頻調(diào)制方式實(shí)現(xiàn)的霍爾傳感器讀出電路。該讀出電路主要包括可變增益運(yùn)算放大器,高頻調(diào)制電路以及1bit量化的二階sigma-delta模數(shù)轉(zhuǎn)換器。通過采用高頻調(diào)制,減少電路中低頻噪聲以及失調(diào)的影響,同時經(jīng)過放大器進(jìn)行幅值放大,避免噪聲混入。首先通過MATLAB建模仿真確定設(shè)計所需參數(shù),然后基于SMIC0.18Ixm混合信號CMOS工藝完成整體電路設(shè)計。經(jīng)測試,電路在3.3V電源電壓,1kHz信號帶寬以及256kHz時鐘頻率下,經(jīng)過后仿真得到信噪比(SNR)為83.12dB,可滿足設(shè)計的要求。
 
  關(guān)鍵詞:爾傳感器讀出電路;高頻調(diào)制電路;可變增益放大器;調(diào)制器
 
  0引言
 
  隨著霍爾傳感器廣泛應(yīng)用于電子、醫(yī)療、器械等各個方面,對其輸出信號進(jìn)行準(zhǔn)確采集變得至關(guān)重要。經(jīng)研究發(fā)現(xiàn),在3.3V電源電壓,±0.4T磁場強(qiáng)度條件下,霍爾傳感器輸出信號范圍在±150mV之間。而在通常應(yīng)用中,霍爾傳感器大多處在較小的磁場里,一般為mT數(shù)量級,因此霍爾傳感器的輸出信號較小,容易受到外界環(huán)境的干擾,需要對輸出信號進(jìn)行放大處理。同時,基于輸出信號頻率較低的特性,需要采用低頻噪聲電路來降低噪聲對信號帶來的影響。最后以模數(shù)轉(zhuǎn)換器作為信號進(jìn)行數(shù)據(jù)轉(zhuǎn)換與精度測量的模塊也是*的。
 
  國外對于讀出電路的研究已經(jīng)較為成熟,而國內(nèi)近些年來也有較大發(fā)展,如上海華虹、中國科學(xué)院微電子所以及中國科學(xué)院大學(xué)在讀出電路設(shè)計方面都有相應(yīng)成果,本文在這些研究基礎(chǔ)上加入噪聲電路,進(jìn)一步改善讀出電路的性能。
 
  霍爾傳感器讀出電路的設(shè)計如圖1所示,主要由對信號進(jìn)行放大的可變增益放大器以及對信號進(jìn)行轉(zhuǎn)換的模數(shù)轉(zhuǎn)換器組成。其中,為避免低頻噪聲和失調(diào)的影響,在設(shè)計中加入了高頻調(diào)制結(jié)構(gòu),將噪聲和失調(diào)轉(zhuǎn)移到信號帶寬之外,以改善整體電路性能。
 
圖1霍爾傳感器讀出電路結(jié)構(gòu)
 
  本文詳細(xì)介紹了讀出電路芯片的設(shè)計,對電路的基本理論與架構(gòu)進(jìn)行研究與分析,完成從Simulink建模,電路設(shè)計到版圖布局各個環(huán)節(jié),最終進(jìn)行后仿真,實(shí)現(xiàn)目標(biāo)要求。
 
  1整體電路建模
 
  從讀出電路基本理論與架構(gòu)出發(fā),基于MATLAB平臺對于整體電路結(jié)構(gòu)進(jìn)行模型仿真。如圖2所示,框圖由上到下分別為基于高頻調(diào)制的可變增益運(yùn)算放大器,sigma—delta調(diào)制器以及降采樣數(shù)字濾波器。具體流程如下:可變增益運(yùn)算放大器根據(jù)輸入信號幅度大小自動選擇合適的放大倍數(shù)進(jìn)行信號放大。放大后的信號由sig-ma-delta調(diào)制器進(jìn)行積分量化,轉(zhuǎn)化為1bit的數(shù)字信號,然后經(jīng)過后級降采樣數(shù)字濾波器的濾波和抽樣過程,輸出高精度的數(shù)字碼。
 
幽2讀出電路的MATLAB模型
 
  該設(shè)計提出在運(yùn)算放大器的輸入與輸出節(jié)點(diǎn)加入高頻調(diào)制電路,其目的主要是將運(yùn)放產(chǎn)生的1/f噪聲和失調(diào)調(diào)制到信號帶寬之外,然后在濾波器的作用下濾除掉,避免噪聲和失調(diào)對低頻小信號產(chǎn)生影響。因此高頻調(diào)制電路的功能主要是完成對噪聲信號的調(diào)制。由傅里葉級數(shù)可知:假設(shè)P是周期為TP占空比為50%的方波信號。傅里葉系數(shù)設(shè)為PK。由此可以得到:
 
     (1)
  若將噪聲的功率譜密度(PSD)設(shè)為Sn(w),則經(jīng)過一次調(diào)制的噪聲功率譜密度Sn(w)可以表示為:
 
    (2)
  由式(2)可以得出:噪聲頻譜Sn經(jīng)過一次調(diào)制被轉(zhuǎn)移到斬波信號P的奇次諧波上,因而削弱了信號基帶內(nèi)的噪聲。而在高頻調(diào)制電路模型搭建過程中,高頻調(diào)制電路的頻率應(yīng)滿足:
 
     (3)
其中,K≥2,BWsignal為信號帶寬,fcorner,為噪聲角頻率。
 
  而對于調(diào)制器的設(shè)計,則應(yīng)先確定其噪聲傳輸函數(shù)。因?yàn)檎{(diào)制器的功能相當(dāng)于低通的模擬濾波器,所以可以根據(jù)巴特沃茲濾波器的特性來對其進(jìn)行分析,得到二階單環(huán)調(diào)制器的噪聲傳輸函數(shù)(NTF)為:
 
      (4)
  基于式(4),由調(diào)制器的架構(gòu),可以推導(dǎo)所需增益以及反饋因子的范圍,然后帶入模型進(jìn)行仿真,確定合適的值。
 
  由于sigma-delta模數(shù)轉(zhuǎn)換器的整體電路是由模擬調(diào)制器和數(shù)字濾波器共同構(gòu)成,調(diào)制器部分決定設(shè)計的精度,而數(shù)字濾波器部分決定設(shè)計的面積和功耗,所以在對濾波器進(jìn)行設(shè)計時,可以使用CIC濾波器、補(bǔ)償濾波器以及半帶濾波器的組合來盡可能的降低所需的硬件開銷,以減小電路的面積和功耗。
 
  考慮實(shí)際電路設(shè)計中各種非理想因素如:KT/C噪聲、時鐘抖動、運(yùn)放的有限增益、帶寬壓擺率以及開關(guān)非線性等的影響,確定模型中各個參數(shù)的指標(biāo)。最終得到仿真結(jié)果如圖3所示,信噪比達(dá)到84.2dB,達(dá)到預(yù)期74dB的設(shè)計目標(biāo)。
 
圖3MATLAB模型仿真結(jié)果
 
  2關(guān)鍵單元電路設(shè)計
 
  2.1高頻調(diào)制電路
 
  高頻調(diào)制電路作為降低電路噪聲及失調(diào)的關(guān)鍵模塊,其內(nèi)部開關(guān)的結(jié)構(gòu)如圖4(a)和圖4(b)所示。
 
圖4關(guān)鍵電路
 
  由圖4(a)可知,在高頻調(diào)制電路中,隨著時鐘信號的交替變化,能夠選通不同的信號路徑,實(shí)現(xiàn)信號與方波相乘的功能。其中,對于方框中電路的選取只需要考慮信號能夠無損失傳輸即可。很簡單的情況是使用單個NMOS管來實(shí)現(xiàn)開關(guān)的功能,但是由于單個NMOS管做開關(guān)存在非線性以及閾值電壓變化的問題,會在電路中引入諧波失真,影響電路性能。所以本設(shè)計采用柵壓自舉開關(guān)的結(jié)構(gòu),如圖4(b)所示,當(dāng)CLK為高電平時,M7管截止,M3和M8管導(dǎo)通,使得c3兩端的電壓為電源電壓;當(dāng)CLK為低電平時,M3和M8管關(guān)斷,M4和M6導(dǎo)通,此時,M7也處于導(dǎo)通狀態(tài)且柵源電壓為C3兩端的電壓,因此與輸入信號的大小無關(guān)。即增加了開關(guān)導(dǎo)通電阻的線性度。同時柵壓自舉開關(guān)的使用一方面避免了單個開關(guān)導(dǎo)通時電阻較大的問題,另一方面也降低了時鐘饋通等因素的影響。
 
  2.2可變增益運(yùn)算放大器
 
  由上述sigma-delta模數(shù)轉(zhuǎn)換器的模型結(jié)構(gòu)可以驗(yàn)證,在滿擺幅范圍內(nèi),隨著輸入信號幅度增加,模數(shù)轉(zhuǎn)換器的峰值信噪比(PSNR)也會增加,但是接近滿擺幅時,會引起調(diào)制器中后級積分器出現(xiàn)過擺幅的現(xiàn)象,從而在輸出引入大量諧波,使得PSNR下降。所以盡量選擇合適的信號幅值輸入。而霍爾傳感器處在不同磁場中,輸出信號幅度不同,這就使得通過轉(zhuǎn)換器轉(zhuǎn)換得到的精度產(chǎn)生很大差異。所以該設(shè)計在霍爾傳感器和模數(shù)轉(zhuǎn)換器之間加入可變增益的運(yùn)算放大器,一方面可以放大前端電路輸出的小信號,另一方面又可以調(diào)節(jié)自身輸出信號幅度以適應(yīng)后級模數(shù)轉(zhuǎn)換電路的要求,結(jié)構(gòu)如圖5所示。
 
圖5可變增益運(yùn)算放大器
 
  在設(shè)計中,為保證電路穩(wěn)定性,運(yùn)放采用閉環(huán)結(jié)構(gòu)。根據(jù)不同輸入信號的幅度大小,由數(shù)字電路控制選取不同的開關(guān)閉合,然后通過電阻比值對信號進(jìn)行相應(yīng)倍數(shù)的放大。其中對于阻值的選取,要考慮版圖的布局,以減小電阻失配誤差帶來的影響。此外,設(shè)計中加入了高頻調(diào)制電路,使得運(yùn)放產(chǎn)生的1If噪聲和失調(diào)移到高頻端,以降低信號帶內(nèi)噪聲。如圖6所示,虛線和實(shí)線分別為不加調(diào)制電路與加入調(diào)制電路的運(yùn)放等效輸入噪聲的仿真結(jié)果,由圖6可以看出,高頻調(diào)制電路地了低頻噪聲。
 
圖6不加與加入凋制電路的運(yùn)放等效輸入噪聲波形
 
  2.3sigma-delta調(diào)制器
 
  傳統(tǒng)的Nyquist模數(shù)轉(zhuǎn)換器利用復(fù)雜的比較方式實(shí)現(xiàn)對信號幅度精確量化的功能。但是由于近些年來工藝技術(shù)不斷發(fā)展,器件尺寸以及電源電壓不斷減小,器件的失配對于傳統(tǒng)模數(shù)轉(zhuǎn)換器的影響越來越大。而sigma-delta調(diào)制器利用其自身的環(huán)路調(diào)節(jié)優(yōu)勢,很大地減小了器件失配對電路精度的影響,易于實(shí)現(xiàn)高精度的轉(zhuǎn)換。調(diào)制過程的實(shí)質(zhì)就是將信號帶內(nèi)大部分噪聲移到帶外,再經(jīng)過后級濾波器濾除,以提高信噪比,即提高轉(zhuǎn)換精度。該設(shè)計中sigma—delta調(diào)制器主要是由開關(guān)電容積分器、量化器、反饋DAC以及兩相非交疊時鐘4個模塊構(gòu)成。
 
  其中,積分器作為調(diào)制器實(shí)現(xiàn)低通濾波功能的主要模塊,結(jié)構(gòu)如圖7所示,由兩相非交疊時鐘來控制電路的采樣與積分過程,同時為避免溝道電荷注入引入非線性誤差,在每個過程中,
 
  控制靠近運(yùn)放輸入端的開關(guān)先斷開,這樣避免了與輸入信號有關(guān)的電荷對運(yùn)放輸出產(chǎn)生影響,但是這種方式會在電路中引入直流偏移,而直流偏移的影響能夠通過全差分結(jié)構(gòu)來消除。
 
圖7積分器電路結(jié)構(gòu)
 
  在實(shí)際設(shè)計過程中,如果考慮運(yùn)放有限增益以及寄生電容的影響,其傳輸函數(shù)為:
 
  (5) 其中,
,
分別為積分器的增益誤差以及極點(diǎn)誤差。
  由式(5)可以看出,由于非理想因素的影響使得傳輸函數(shù)的極點(diǎn)由原點(diǎn)處發(fā)生了偏移,這樣會削弱積分器電路對于帶內(nèi)噪聲的作用。所以設(shè)計積分器參數(shù)時對于各種非理想因素造成的影響要在前面模型設(shè)計中進(jìn)行詳細(xì)分析,在非理想情況下,確定合適的參數(shù)值。同可變增益運(yùn)放一樣,積分器中也可以加入高頻調(diào)制電路,以避免低頻噪聲影響。但在調(diào)制器設(shè)計中只需要考慮第一階積分器的噪聲即可??梢宰C明:假設(shè)在n階單環(huán)調(diào)制器中,第i個積分器的等效輸入噪聲為En,i,則整個調(diào)制器的等效輸入噪聲Ei可以表示為:
 
   (6)
  式(6)成立的條件是當(dāng)n≥2時,調(diào)制器處于穩(wěn)定狀態(tài)。其中,K1,K2,a分別為第一及個積分器的增益衰減因子。從式子可以看出,除第一階積分器之外,第i(i>1)階積分器都受到i-1階的調(diào)制作用。所以在進(jìn)行調(diào)制器設(shè)計時,只需要在第一階調(diào)制器中加入高頻調(diào)制電路。對于量化器的設(shè)計,從降低功耗角度考慮,本文采用動態(tài)鎖存比較器來實(shí)現(xiàn)。如圖8所示,其工作過程主要分為2個階段:預(yù)置期和再建期。在預(yù)置階段,將CLKl置為低電平,CLK2置為高電平,M11和M14導(dǎo)通,C、d兩點(diǎn)被充電到電源電壓。而開關(guān)管M2a作為復(fù)位管,電流流經(jīng)M2a使得a、b兩點(diǎn)的電位差迅速減小,且與此時的輸入電壓差成正比。下一時刻,CLKl被置為高電平,CLK2為低電平。比較器進(jìn)入再建期即比較階段,將復(fù)位后a、b兩點(diǎn)的差值作為比較電壓的初始值,之后在正反饋?zhàn)饔孟?,a、b兩點(diǎn)電壓被拉到電源電壓和地,得出比較結(jié)果。
 
圖8動態(tài)鎖存比較器結(jié)構(gòu)
 
  此外,在比較器設(shè)計過程中需要著重考慮復(fù)位管M2a的尺寸問題。若管子尺寸設(shè)計較小,則管子電阻變大,流過M2a的電流將減小,繼而降低了a、b兩點(diǎn)平衡的速度,增加了復(fù)位階段的時間;但若管子尺寸設(shè)計的較大,管子的電阻變小,使得復(fù)位后a、b兩點(diǎn)的電壓差較小,降低了再建速度。所以設(shè)計時應(yīng)按照要求折衷考慮。比較器設(shè)計中還需要考慮到比較器的kick-back噪聲和失調(diào)的影響,其中,kickback噪聲是比較器的輸出通過管子的寄生電容耦合到輸入引起的,可以通過引入開關(guān)電容的采樣電路來降低其影響。而失調(diào)主要是由輸入管的匹配精度決定,所以在比較器的版圖設(shè)計時應(yīng)注意輸入管的擺放。
 
  由于調(diào)制器輸入擺幅設(shè)計為1V,要實(shí)現(xiàn)12bits的精度,比較器的最小精度達(dá)到1/2個LSB即可,通過仿真,比較器能實(shí)現(xiàn)精度為0.1mV的比較,滿足設(shè)計要求。
 
  3、版圖與仿真
 
  本設(shè)計是基于SMIC0.18um混合信號CMOS工藝實(shí)現(xiàn)的,在3.3V電源電壓下整體電路的功耗為2.1mW,讀出電路的版圖布局,如圖9所示,面積為1.05mmX0.73mm。
 
圖9霍爾傳感器版圖設(shè)計
 
  基于整體版圖設(shè)計,進(jìn)行寄生參數(shù)提取,然后在輸入信號為4mV,前端放大器放大100倍,時鐘頻率為256kHz的條件下進(jìn)行后仿真。仿真結(jié)果如圖10所示,信噪比為83.12dB,位數(shù)為13.5bits,滿足了設(shè)計的要求。
 
圖10讀山電路FFT分析結(jié)果
 
  4安科瑞霍爾傳感器產(chǎn)品選型
 
  4.1產(chǎn)品介紹
 
  霍爾電流傳感器主要適用于交流、直流、脈沖等復(fù)雜信號的隔離轉(zhuǎn)換,通過霍爾效應(yīng)原理使變換后的信號能夠直接被AD、DSP、PLC、二次儀表等各種采集裝置直接采集和接受,響應(yīng)時間快,電流測量范圍寬精度高,過載能力強(qiáng),線性好,抗干擾能力強(qiáng)。適用于電流監(jiān)控及電池應(yīng)用、逆變電源及太陽能電源管理系統(tǒng)、直流屏及直流馬達(dá)驅(qū)動、電鍍、焊接應(yīng)用、變頻器,UPS伺服控制等系統(tǒng)電流信號采集和反饋控制。
 
  4.2產(chǎn)品選型
 
  4.2.1開口式開環(huán)霍爾電流傳感器
 
表1
 
  4.2.2閉口式開環(huán)霍爾電流傳感器
 
表2
 
  4.2.3閉環(huán)霍爾電流傳感器
 
表3
 
  4.2.4直流漏電流傳感器
 
表4
 
  5實(shí)驗(yàn)結(jié)論
 
  本文基于石墨烯霍爾傳感器輸出信號的特點(diǎn),完成了其讀出電路的設(shè)計。采用可變增益運(yùn)算放大器對信號進(jìn)行放大,再由過采樣ADC進(jìn)行數(shù)據(jù)轉(zhuǎn)換與精度測量。而在整個過程中,通過高頻調(diào)制方式降低低頻噪聲以及失調(diào)的影響,以改善電路的性能。最終在smico.18μM1P6MCOS工藝條件下,對整體電路進(jìn)行測試,結(jié)果表明電路滿足12bits的設(shè)計目標(biāo)。
 
  【參考文獻(xiàn)】
 
  [1] 孫海燕,趙雅靜,張曉波,戴瀾.基于高頻調(diào)制的霍爾傳感器讀出電路設(shè)計術(shù)
 
  [2] 陳鋮穎,蔣見花,胡曉宇.一種基于石墨烯霍爾器件的讀出電路設(shè)計[J].微電子學(xué)與計算機(jī),2013,12(30):137—141.
 
  [3] 安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊2020.06版
 
Contact Us
  • 聯(lián)系QQ:2880263320
  • 聯(lián)系郵箱:2881392118@qq.com
  • 傳真:18717707094
  • 聯(lián)系地址:上海市嘉定區(qū)馬陸鎮(zhèn)育綠路253號安科瑞

掃一掃  微信咨詢

©2024 安科瑞電子商務(wù)(上海)有限公司 版權(quán)所有  備案號:滬ICP備18001305號-12  技術(shù)支持:智慧城市網(wǎng)    sitemap.xml    總訪問量:260640 管理登陸

男人10处有痣是富贵痣| 野花香社区TV| 我的美丽岳李雪梅第6章| 女士晚上玩的玩具哪个最好| 一本色道久久88综合亚洲精品| 日本三级片电影| 成 人 A V免费视频在线观看| 丰满少妇被猛烈高清播放| 无码国产精品一区二区免费I6| 老公的很粗每次进去都很痛| 天天躁夜夜躁天干天干2020| 99久久国产精品免费| 男男gay做爽爽的视频| 少妇人妻精品一区二区三区| 日本三级在线观看| 国产精品女a片爽爽波多洁衣| xxxx69hd一hd女| 国产精品一区二区久久国产| 男女吃奶做爰猛烈紧视频| 6080yyy午夜理论aa片| 亚洲精品久久久无码av片软件| 欧美体内she精视频| 国产人妻高清国产拍精品| 欧美日韩在线视频| 肉色超薄丝袜脚交一区二区| 国产精品 高清 尿 小便 嘘嘘| 国产亲妺妺乱的性视频播放| 女人高潮被爽到呻吟在线观看| 久久精品国产亚洲77777| 青青青伊人色综合久久| 无码精品日韩专区第一页| 成 人 免费 黄 色 网站视频| 白领人妻的屈辱交易| bdsm变态狂极端妓女| yd双性学生授乳荡奶头| 精品人妻无码一区二区三区蜜桃一| 久久人人爽人人爽人人片AV超碰| 五月丁香欧美综合亚洲AV| 亚洲人妻| 我变成黑皮辣妹和朋友做了| 欧美成人精品视频在线观看|